
编译源码

https://github.com/influxdata/influxdb/commit/5f6a17ffd0fd21b4ed83607628aef19abd36671b

依赖

rust

从 https://rustup.rs/ 获取脚本或下载工具安装。

其他安装方式见：

https://rust-lang.github.io/rustup/installation/other.html

安装完，运行 cargo --version 没报错就表示你已进入 rustlang 的大门。

protoc

安装 protobuf compiler 见 https://protobuf.dev/installation/

python3

ubuntu 系统：

如果你安装了多个 python 版本，则需要使用 export PYO3_PYTHON=/usr/bin/python3 指定
python 的具体位置。

编译

保证好你有个好网络，然后等待你的 CPU 发热，内存飙升。

hello influxdb
在源码目录运行以下命令启动服务端程序：

然后按以下步骤连接数据库，并执行 SQL 命令：

sudo apt-get install python3 python3-pip python3-venv python3-dev

git clone https://github.com/influxdata/influxdb.git

cd influxdb

cargo build

cargo run

或者

LOG_FILTER=debug cargo run

https://github.com/influxdata/influxdb/commit/5f6a17ffd0fd21b4ed83607628aef19abd36671b
https://rustup.rs/
https://rust-lang.github.io/rustup/installation/other.html
https://protobuf.dev/installation/

SQL 参考手册

探寻源码

Debug in VS Code
安装插件：rust-analyzer, codelldb

可以使用 attach 和 launch 两种方式调试。launch.json 如下：

创建认证码并保存

cargo run -- create token --admin

export INFLUXDB3_AUTH_TOKEN="xxxxxx"

创建数据库

cargo run -- create database idb

执行 SQL

cargo run -- query -d idb 'select 1'

{

"version": "0.2.0",

"configurations": [

{

"name": "attach to influxdb3",

"type": "lldb",

"request": "attach",

"pid": "${command:pickProcess}",

"stopOnEntry": false,

},

{

"name": "Debug executable 'influxdb3'",

"type": "lldb",

"request": "launch",

"cargo": {

"args": [

"run",

"--bin=influxdb3",

"--package=influxdb3"

]

},

"args": []

}

]

}

https://datafusion.apache.org/user-guide/sql/index.html

跟踪 select 语句的执行

HttpApi QueryExecutor Databaseiox_query

http.rs:route_request/
http_server.query_sql()

get_db_namespace

plan SqlQueryPlanner::query

create an IOxSessionContext

execute_stream

SendableRecordBatchStream

User

跟踪写流程

HttpApi WAL background_wal_flush ObjectStore QueryableBufferWriteBufferImpl

http.rs:route_request/
http_server.write_lp()

WriteValidator::initialize

table_or_create

column_or_create

commit_catalog_changes

convert_lines_to_buffer

tt

WalObjectStore::write_ops

Wal::flush_buffer

serialize_to_file_bytes

notify

ObjectStore:put_ops

behind wal write

wait flushing

User

数据流图

target/debug/influxdb3 create database idb

target/debug/influxdb3 query -d idb 'select 1'

target/debug/influxdb3 write \

--database idb \

'home,room=LivingRoom temp=21.1,hum=35.9,co=0i 1761724800'

Line Protocol Data

ParsedLine

series
In the InfluxDB 3 data structure, a collection of data that share a common
measurement and tag set.

QualifiedLine

ValidatedLines

WriteBatch

WalOp::Write

WalContents

last_cache distinct_cache

BufferState

QueryableBuffer
Bytes

3. Enabling fast recovery by loading the latest snapshot instead
of replaying thousands of WAL files

ObjectStore

pub struct WriteBatch {
 pub catalog_sequence: u64,
 pub database_id: DbId,
 pub database_name: Arc<str>,
 pub table_chunks: SerdeVecMap<TableId, TableChunks>,
 pub min_time_ns: i64,
 pub max_time_ns: i64,
}

pub struct TableChunks {
 pub min_time: i64,
 pub max_time: i64,
 pub chunk_time_to_chunk: HashMap<i64, TableChunk>,
}

pub struct TableChunk {
 pub rows: Vec<Row>,
}

pub struct BufferState {
 pub db_to_table: HashMap<DbId, TableIdToBufferMap>,
 catalog: Arc<Catalog>,
}

type TableIdToBufferMap = HashMap<TableId, TableBuffer>;

pub struct TableBuffer {
 chunk_time_to_chunks: BTreeMap<i64, MutableTableChunk>,
 snapshotting_chunks: Vec<SnapshotChunk>,
}

WalFileNotifier

struct MutableTableChunk {
 timestamp_min: i64,
 timestamp_max: i64,
 data: BTreeMap<ColumnId, Builder>,
 row_count: usize,
}

notify

pub struct SnapshotChunk {
 pub(crate) chunk_time: i64,
 pub(crate) timestamp_min_max: TimestampMinMax,
 pub(crate) record_batch: RecordBatch,
 pub(crate) schema: Schema,
}

Without snapshotting, WAL files would accumulate indefinitely, making
recovery slow and storage costs unbounded. The snapshot system solves
this by:

1. Persisting buffered data as queryable Parquet files

arrow_schema::Schema

2. Allowing old WAL files to be safely deleted

arrow_array::RecordBatch

~~~~~~~~~~~~~~~~~~~~~

PersistJob

SendableRecordBatchStream

Compact

ObjectStore

memory

ParquetFile
should be named ParquetFileMetadata

object store

ParquetBytes

ObjectStoreobject store

Test
https://insta.rs/docs/quickstart/

install tools:

snapshot test ​

A snapshot test is basically a “freeze-frame” test. Instead of asserting a bunch of tiny details
by hand, you capture the entire output of some code once, save it to a file, and from then on
your test checks that the output hasn’t unexpectedly changed.

The insta crate is Rust’s most popular tool for this.

Here’s the idea in plain terms:

You run your test the first time → it records the output into a snapshot file.
Later runs → it compares the new output to the stored snapshot.
If they differ → the test fails, and you can inspect the diff.

It’s like version control, but for test expectations.

cargo install nextest

curl -LsSf https://insta.rs/install.sh | sh

https://insta.rs/docs/quickstart/


run all tests:

run single test:

use cargo insta review  to check failed tests.

参考

cargo nextest run --workspace

cargo nextest list --workspace

cargo nextest run -E 'test(show_system)'

https://docs.influxdata.com/influxdb3/core/
https://deepwiki.com/influxdata/influxdb
https://github.com/influxdata/influxdb/blob/main/CONTRIBUTING.md
https://pyo3.rs/main/building-and-distribution.html

https://docs.influxdata.com/influxdb3/core/
https://deepwiki.com/influxdata/influxdb
https://github.com/influxdata/influxdb/blob/main/CONTRIBUTING.md
https://pyo3.rs/main/building-and-distribution.html

